top of page

Below are lists of peer-reviewed publications, other publications, and conference abstracts for the Sori Research Group.  Bold text represents an author from the research group – PI Sori or a graduate student, undergraduate student, or postdoctoral researcher under his advisement.

The CV of PI Mike Sori can be downloaded here (current as of July 29, 2024).

 

Peer-Reviewed Publications

[47] Pamerleau, I.F., M.M. Sori, and J.E.C. Scully (2024), An ancient and impure frozen ocean on Ceres implied by its ice-rich crust, Nature Astronomy, in press.

[46] McGlasson, R.A., M.M. Sori, A.M. Bramson, and D.E. Lalich (2024), Radar sounding reveals common evolutionary history between the north polar layered deposits and outlier deposits on Mars, Geophys. Res. Lett. 51, e2024GL109057.

[45] Menten, S.M., M.M. Sori, A.M. Bramson, T.A. Nordheim, and R.J. Cartwright (2024), Volatile transport on Ariel and implications for the origin and distribution of carbon dioxide on Uranian moons, J. Geophys. Res. Planets 129, e2024JE008376.

[44] Nichols-Fleming, F., A.J. Evans, B.C. Johnson, and M.M. Sori (2024), Moment of inertia and tectonic record of asteroid 16 Psyche may reveal interior structure and core solidification processes, J. Geophys. Res. Planets 129, e2024JE008291.

[43] Wagner, N., P.B. James, A.I. Ermakov, and M.M. Sori (2024), Evaluating the use of seasonal surface displacements and time-variable gravity to constrain the interior of Mars, J. Geophys. Res. Planets 129, e2023JE008053.

[42] Sori, M.M., I.T. Lawrence, K. Izquierdo, and D.E. Granger (2024), Implications of MOLA topography on the presence of liquid water under the south polar cap of Mars, Icarus 416, 116083.

[41] Izquierdo, K., M.M. Sori, B. Checketts, I. Hampton, B.C. Johnson, and J.M. Soderblom (2024), Global distribution and volume of cryptomare and visible mars on the Moon from gravity and dark halo craters, J. Geophys. Res. Planets 129, e2023JE007867.

[40] Cashion, M.D., B.C. Johnson, H. Gibson, E.P. Turtle, M.M. Sori, and H.J. Melosh (2024), Europa's double ridges produced by ice wedging, J. Geophys. Res. Planets 129, e2023JE008007.

[39] McGlasson, R.A., A.M. Bramson, G.A. Morgan, and M.M. Sori (2023), Varied histories of outlier polar ice deposits on Mars, J. Geophys. Res. Planets 128, e2022JE007592.

[38] Bramson, A.M., L.M. Carter, G.W. Patterson, M.M. Sori, G.A. Morgan, L.M. Jozwiak, C.A. Nypaver, and J.T.S. Cahill (2022), Burial depths of extensive shallow cryptomaria in the lunar Schiller-Schickard region, Planet. Sci. J. 3, 216.

 

[37] Menten, S.M., M.M. Sori, and A.M. Bramson (2022), Endogenically sourced volatiles on Charon and other Kuiper Belt Objects, Nature Communications 13, 4457.

[36] Egea-Gonzalez, I., P.C. Lois, A. Jiménez-Díaz, A.M. Bramson, M.M. Sori, and J. Ruiz (2022), The stability of a liquid-water body below the south polar cap of Mars, Icarus 383, 115073.

[35] Dickson, L.H. and M.M. Sori (2022), The origin of mascons on Ceres as constrained by crater morphology, Icarus 382, 115024.

[34] Sori, M.M., P. Becerra, J. Bapst, S. Byrne, and R.A. McGlasson (2022), Orbital forcing of Martian climate revealed in a south polar outlier ice deposit, Geophys. Res. Lett. 49, e2021GL097450.

[33] Castillo-Rogez, J., M. Neveau, V. Vinogradoff, K. Miller, M.M. Sori, F. Tosi, B. Schmidt, K. Hughson, C. De Sanctis, H. McSween, J. Scully, L. Quick, K. Otto, K. Krohn, G. Thangjam, A. Ermakov, P. Schenk, A. Nathues, and C. Raymond (2022), Science drivers for the exploration of Ceres: From Solar System evolution to ocean world science, Planet. Sci. J. 3, 64.

[32] Castillo-Rogez, J., J. Brophy, K. Miller, M.M. Sori, J. Scully, L. Quick, R. Grimm, M. Zolensky, M. Bland, D. Buczkowski, C. Raymond, A. Hendrix, T. Prettyman, Y. Sekine, T. Titus, D. Williams, P. Backes, L. Barge, A. Ermakov, S. Moreland, and K. Zacny (2022), Concepts for the future exploration of dwarf planet Ceres' habitability, Planet. Sci. J. 3, 41.

[31] Nichols-Fleming, F., A.J. Evans, B.C. Johnson, and M.M. Sori (2022), Porosity evolution in metallic asteroids: Implications for the origin and thermal history of asteroid 16 Psyche, J. Geophys. Res. Planets.

[30] Cartwright, R.J., T.A. Nordheim, D.R. Decolibus, W.M. Grundy, B.J. Holler, C.B. Beddingfield, M.M. Sori, M.P. Lucas, C.M. Elder, L.H. Regoli, D.P. Cruikshank, J.P. Emery, E.J. Leonard, and C.J. Cochrane (2022), A CO2 cycle on Ariel? Radiolytic production and migration to low latitude cold traps, Planet. Sci. J. 3, 8.

[29] Izquierdo, K., M.M. Sori, J.M. Soderblom, B.C. Johnson, and S.E. Wiggins (2021), Lunar megaregolith structure revealed by GRAIL gravity data, Geophys. Res. Lett. 48, e2021GL095978,.

 

[28] Cartwright, R.J., C.B. Beddingfield, T.A. Nordheim, C.M. Elder, J.C. Castillo-Rogez, M. Neveu, A.M. Bramson, M.M. Sori, B.J. Buratti, R.T. Pappalardo, J.E. Roser, I.J. Cohen, E.J. Leonard, A.I. Ermakov, M.R. Showalter, W.M. Grundy, E.P. Turtle, and M.D. Hofstadter (2021), The science case for spacecraft exploration of the Uranian satellites: Candidate ocean worlds in an ice giant system, Planet. Sci. J. 2, 120.

[27] Schaefer, E.I., C.W. Hamilton, C.D. Neish, M.M. Sori, A.M. Bramson, and S.P. Beard (2021),  Reexamining the potential to classify lava flows from the fractality of their margins, J. Geophys. Res. Solid Earth 126, e2020JB020949.

[26] Sori, M.M. (2021), Can Triton's internal heat be inferred from its ice cap? Geophys. Res. Lett. 48.

[25] Johnson, B.C. and M.M. Sori (2020), Landslide morphology and mobility on Ceres controlled by topography, J. Geophys. Res. Planets 125, e2020JE006640.

[24] Scully, J.E.C., P.M. Schenk, J.C. Castillo-Rogez, D.L. Buczkowski, D.A. Williams, J.H. Pasckert, K.D. Duarte, V.N. Romero, L.C. Quick, M.M. Sori, M.E. Landis, C.A. Raymond, A. Neesemann, B.E. Schmidt, H.G. Sizemore, and C.T. Russell (2020), The varied sources of faculae-forming brines in Ceres' Occator crater emplaced via hydrothermal brine effusion, Nature Communications 11, 3680.

[23] Park, R.S., A.S. Konopliv, A.I. Ermakov, J.C. Castillo-Rogez, R.R. Fu, K.H.G. Hughson, T.H. Prettyman, C.A. Raymond, J.E.C. Scully, H.G. Sizemore, M.M. Sori, A.T. Vaughan, G. Mitri, B.E. Schmidt, C.T. Russell (2020), Evidence of non-uniform crust of Ceres from Dawn's high-resolution gravity data, Nature Astronomy 4, 748–755.

[22] Hamilton, C.W., S.P. Scheidt, M.M. Sori, A.P. de Wet, J.E. Blacher, P.J. Mouginis-Mark, S. Self, J.R. Zimbelman, W.B. Garry, P.L. Whelley, and L.S. Crumpler (2020), Lava rise plateaus and inflation pits in the McCartys lava flow-field, New Mexico: An analog for pāhoehoe-like lava flows on planetary surfaces, J. Geophys. Res. Planets 125, e2019JE005975 (cover image).

[21] Johnson, B.C., M.M. Sori, and A.J. Evans (2020), Ferrovolcanism on metal worlds and the origin of pallasites, Nature Astronomy 4, 41–44.

[20] Sori, M.M, J. Bapst, P. Becerra, and S. Byrne (2019), Islands of ice on Mars and Pluto, J. Geophys. Res. Planets 124, 2522–2542. 

[19] Bland, M.T., D.L. Buczkowski, H.G. Sizemore, A.I. Ermakov, S.D. King, M.M. Sori, C.A. Raymond, J.C. Castillo-Rogez, and C.T. Russell (2019), Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics, Nature Geoscience 12, 797–801.

[18] Becerra, P., M.M. Sori, N. Thomas, A. Pommerol, S.S. Sutton, S. Tulyakov, E. Simioni, and G. Cremonese (2019), Timescales of the climate record in the south polar ice cap of Mars, Geophys. Res. Lett. 46, 7268–7277 (cover image).

[17] Sori, M.M.* and A.M. Bramson* (2019), Water on Mars, with a grain of salt: Local heat anomalies are required for basal melting of ice at the south pole today, Geophysical Research Letters 46, 1222–1231 (*Both authors contributed equally).

[16] Sizemore, H.G., B.E. Schmidt, D.A. Buczkowski, M.M. Sori, J.C. Castillo-Rogez, D.C. Berman, C. Ahrens, H.T. Chilton, K.H.G. Hughson, K. Duarte, K.A. Otto, M.T. Bland, A. Neesemann, J.E.C. Scully, D.A. Crown, S.C. Mest, D.A. Williams, T. Platz, P. Schenk, M.E. Landis, S. Marchi, N. Schorghofer, L.C. Quick, T.H. Prettyman, M.C. De Sanctis, A. Nass, G. Thangjam, A. Nathues, C.T. Russell, and C.A. Raymond (2019), A global inventory of ice-related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere, J. Geophys. Res. Planets 124, 1650–1689.

[15] Ruesch, O., L.C. Quick, M.E. Landis, M.M. Sori, O. Cadek, P. Brož, K.A. Otto, M.T. Bland, S. Byrne, J.C. Castillo-Rogez, H. Hiesinger, R. Jaumann, K. Krohn, L.A. McFadden, A. Nathues, A. Neesemann, F. Preusker, T. Roatsch, P.M. Schenk, J.E.C. Scully, M.V. Sykes, D.A. Williams, C.A. Raymond, and C.T. Russell (2019), Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains, Icarus 320, 39–48.

[14] Sori, M.M., H.G. Sizemore, S. Byrne, A.M. Bramson, M.T. Bland, N.T. Stein, and C.T. Russell (2018), Cryovolcanic rates on Ceres revealed by topography, Nature Astronomy 2, 946–950.  Featured in Nature Astronomy News & Views.

[13] Hamilton, C.W., P.J. Mouginis-Mark, M.M. Sori, S.P. Scheidt, and A.M. Bramson (2018), Episodes of aqueous flooding and volcanism from geologically recent outflow channels on Mars, J. Geophys. Res. Planets 123, 1484–1510.

[12] Sori, M.M. (2018), A thin, dense crust for Mercury, Earth Planet. Sci. Lett. 489, 92–99.

[11] Sori, M.M., P.B. James, B.C. Johnson, J.M. Soderblom, S.C. Solomon, M.A. Wieczorek, and M.T. Zuber (2018), Isostatic compensation of the lunar highlands, J. Geophys. Res. Planets 123, 646–665.

 

[10] Sori, M.M., J.N. Bapst, A.M. Bramson, S. Byrne, and M.E. Landis, A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian Moons (2017), Icarus 290, 1–13.

 

[9] Sori, M.M., S. Byrne, M.T. Bland, A.M. Bramson, A.I. Ermakov, C.W. Hamilton, K.A. Otto, O. Ruesch, and C.T. Russell (2017), The vanishing cryovolcanoes of Ceres, Geophysical Research Letters 44, 1243–1250.

 

[8] Becerra, P., M.M. Sori, and S. Byrne (2017), Signals of astronomical forcing in the exposure topography of Mars’ north polar layered deposits, Geophysical Research Letters 44, 62–70.

 

[7] Smith, D.E., M.T. Zuber, G.A. Neumann, E. Mazarico, F.G. Lemoine, J.W. Head, P.G. Lucey, O. Aharonson, M.S. Robinson, X. Sun, M.H. Torrence, M.K. Barker, J. Oberst, T.C. Duxbury, D. Mao, O.S. Barnouin, K. Jha, D.D. Rowlands, S. Goossens, D. Baker, S. Bauer, P. Gläser, M. Lemelin, M. Rosenburg, M.M. Sori, J. Whitten, and T. Mcclanahan (2017), Summary of the results from the Lunar Orbiter Laser Altimeter after seven years in lunar orbit, Icarus 283, 70–91.

 

[6] Becerra, P., S. Byrne, M.M. Sori, S. Sutton, and K.E. Herkenhoff (2016), Stratigraphy of the north polar layered deposits of Mars using high-resolution topography, J. Geophys Res. Planets 121, 1445–1471.

 

[5] Sori, M.M., M.T. Zuber, J.W. Head, and W.S. Kiefer (2016), Gravitational search for cryptovolcanism on the Moon: Evidence for large volumes of early igneous activity, Icarus 273, 284–295.

 

[4] Sori, M.M., S. Byrne, C.W. Hamilton, and M.E. Landis (2016), Viscous flow rates of icy topography on the North Polar Layered Deposits of Mars, Geophysical Research Letters 43, 541–549.

 

[3] Neumann, G.A., M.T. Zuber, D.E. Smith, M.A. Wieczorek, J.W. Head, D.M.H. Baker, S.C. Solomon, D.E. Smith, F.G. Lemoine, E. Mazarico, T.J. Sabaka, S. Goossens, H.J. Melosh, R.J. Phillips, S.W. Asmar, A.S. Konopliv, J.G. Williams, M.M. Sori, J.M. Soderblom, K. Miljkovic, J.C. Andrews-Hanna, F. Nimmo, and W.S. Kiefer (2015), Lunar Impact Basins Revealed by Gravity Recovery and Interior Laboratory Measurements, Science Advances 1.

 

[2] Soderblom J.M., A.J. Evans, B.C. Johnson, H.J. Melosh, K. Miljkovic, R.J. Phillips, J.C. Andrews-Hanna, C.J. Bierson, J.W. Head, C. Milbury, G.A. Neumann, F. Nimmo, D.E. Smith, S.C. Solomon, M.M. Sori, M.A. Wieczorek, and M.T. Zuber (2015), The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering, Geophysical Research Letters 42, 6939–6944.

 

[1] Sori, M.M., J.T. Perron, P. Huybers, and O. Aharonson (2014), A procedure for testing the significance of orbital tuning of the Martian polar layered deposits, Icarus 235, 136–146.

Other Publications

[19] M.M. Sori (2023), Unwrapping Uranus and its icy secrets: What NASA would learn from a mission to a wild world, The Conversation.

[18] Mars Concurrent Exploration Science Analysis Group (2023), Mars Concurrent Exploration Science Analysis Group (MCE-SAG) final report, co-chairs: M. Mischna and B. Horgan, 94pp, posted by the Mars Exploration Program Analysis Group.

[17] M.M. Sori,  J.T. Keane, and A.I. Ermakov (2023), Next-generation planetary geodesy, Keck Institute for Space Studies, Final report, Pasadena, CA.

[16] Sori, M.M. (2023), Jupiter's moons hide giant subsurface oceans – two upcoming missions are sending spacecraft to see if these moons could support life, The Conversation.

[15] Sori, M.M. (2023), Ice mounds on Mars are a vault of the planet's climate history, International Association for Geomorphology Planetary Geomorphology Image of the Month.

[14] Mars Ice Core Working Group (2021), First ice cores from Mars, co-chairs: M.R. Albert and M. Koutnik, 77pp. white paper.

[13] James, P., A. Ermakov, and M.M. Sori (2020), Requirements for gravity measurements on the anticipated Artemis III mission, arxiv Astrophysics: Instrumentation and methods for astrophysics.

[12] James, P., A. Ermakov, J. Keane, M. Wieczorek, M.M. Sori, B. Johnson, S. Goossens, A. Evans, B. Bills, S. Chiow, M. Ding, F. Nimmo, R. Sood, S. Gulick, C. Beghein, and C. Johnson (2020), The value of surface-based gravity and gravity gradient measurements at the Moon’s south pole with Artemis III, Artemis

Science Definition white paper.

[11] Sori, M.M., A.I. Ermakov, J.T. Keane, et al. (2020), Transformative science unlocked by future geodetic data at Mars, Venus, and Ocean Worlds, Decadal survey on planetary science and astrobiology 2023–2032 white paper.

[10] Cartwright, R.J., et al. (2020), The science case for spacecraft exploration of the Uranian satellites, Decadal survey on planetary science and astrobiology 2023–2032 white paper.

[9] Becerra, P., et al. (2020), The importance of the climate record in the Martian polar layered deposits, Decadal survey on planetary science and astrobiology 2023–2032 white paper.

[8] Smith, I.B., et al. (2020), A case for Mars Polar Science in the Solar System, Decadal survey on planetary science and astrobiology 2023–2032 white paper.

[7] Craft, K., et al. (2020), The importance of cryovolcanism in transporting subsurface material towards/to the surface, Decadal survey on planetary science and astrobiology 2023–2032 white paper.

[6] Castillo-Rogez, J.C., et al. (2020), Science motivations for the future exploration of Ceres, Decadal survey on planetary science and astrobiology 2023–2032 white paper.

[5] Sori, M.M. (2018), Ice volcanoes in the asteroid belt, Nature Astronomy “Behind the paper” series.

[4] Sori, M.M. and A.J. Brown (2018), Introduction: The 6th special issue of Mars Polar Science, Icarus 308, 1.

[3] Sori, M.M. (2017), A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other moons of Uranus, International Association for Geomorphology Planetary Geomorphology Image of the Month.

[2] Sori, M.M. (2014), Judging a planet by its cover: Insight into lunar crustal structure and martian climate history from surface features, Ph.D. thesis, MIT.

[1] Sori, M.M. (2008), Study and characterization of a gamma ray imaging system, Undergraduate senior thesis, Duke University.

bottom of page